Coatings Corrosion

Fracture and Mechanical Testing High Temperature Mechanical Properties

Hydrogen Production and Storage Materials

Hydrogen Separation Materials Irradiation

Materials Validation

Microstructure and Physical Properties

Modeling

Materials

Neutron Radiography
Nondestructive Evaluation
Post-irradiation Examination
Synthesis and Processing of Novel

Welding and Joining X-Ray Radiography

Microstructure and Physical Properties

Capabilities/Facilities

ptical metallography, including sample preparation; environmental scanning electron microscopy; scanning transmission electron microscopy; X-ray diffraction with high temperature capability; thermal analysis; Auger and XPS surface analysis; scanning probe microscopies; nano-indentation mechanical property analysis; thermo-physical property characterization of radioactive materials; scanning electron microscope with energy and wave lengthdispersive spectroscopy and electron backscatter detector: transmission electron microscope with energy dispersive X-ray spectroscopy, electron diffraction, high-resolution capability; sample handling for radioactive materials; orientation imaging microscopy; and X-ray diffraction with hot stage for radiological samples. Facilities for preparation of activated metallic and ceramic samples.

Materials

Wide range of engineering alloys and intermetallics; oxide, nitride and carbide ceramics; waste forms and coating materials; and metals, ceramics, sludges, and powders containing uranium, plutonium, corrosion products, and minor actinides.

Scientific/Engineering Issues

Microstructure/property relationships, fundamental and applied corrosion studies, high temperature phase stability, environmental effects, coating performance, and membrane characterization; determination of thermophysical properties of nuclear materials; irradiation effects; phase identification; micro structural and chemical characterization with high spatial resolution.

Staff

P.J. Pinhero, T.E. Lister, T. O'Holleran, J.-F. Jue, J.R. Kennedy, J. Gan, J.I. Cole, D.D. Keiser, D.E. Janney, S.M. Frank, M.J. Lambregts.

Recent Projects

- Fabrication and characterization of dual-phase
 MgO-based ceramics for use as an inert fuel matrix
- Temper embrittlement of ferritic ODS alloys
- Determination of thermophysical properties of Puand minor-actinide-bearing alloys for the Advanced Fuel Cycle Initiative
- Measurement of ignition temperature of hydride uranium
- Development of alloys with improved radiation resistance for DOE's Nuclear Energy Research Initiative
- Development of Gas
 Fast Reactor materials
 for DOE's Generation IV
 nuclear reactor
- Evaluation and development of materials for Generation IV supercritical water reactors for DOE's International Nuclear Energy Research Initiative
- Assessing long-term radiation effects in EBR-II structural hardware

Continued on next page

A laser flash thermal diffusivity system is used to characterize physical properties of multi-layer materials.

INL RESEARCH & DEVELOPMENT

For more information

Richard N. Wright, Ph.D. (208) 526-6127 Richard.Wright@inl.gov

Douglas C. Crawford, Ph.D. (208) 533-7456 Douglas.Crawford@inl.gov

www.inl.gov/envenergyscience/materials

INL is a U.S. Department of Energy national laboratory operated by Battelle Energy Alliance

Continued from front

- Characterization of actinide distributions in intermetallic materials in simulated metallic waste forms
- Characterization of corrosion products on simulated metallic waste forms

Collaborations

- University of Utah
- Lehigh University
- Sandia National Laboratory
- Supporting Texas A&M student on doctoral thesis
- Japan Nuclear Cycle Development Institute
- University of Michigan
- University of Wisconsin
- Korea-DOE Nuclear Energy Research Initiative

Publications

"Phase Relations in Neptunium Bearing Plutonium-Zirconium Alloys," J.R. Kennedy, J.R. Stuart, D.D. Keiser, S.M. Frank and M. Meyer, *Transaction American Nuclear Society*, Vol. 87, p. 357, 2002.

"Effect of Irradiation on Microstructure and Microchemistry of Grain Boundary Engineered Austenitic Alloys," J. Gan, J.I. Cole, T.R. Allen, R.B. Dropek, G.S. Was, and E.A. Kenik, to be published in *Philosophical Magazine*.

"Effect of Zr on the Irradiated Microstructure and Hardening in Type 304 Stainless Steel," J. Gan, J.I. Cole, T.R. Allen, R.B. Dropek and G.S. Was, *Fusion Science and Technology*, Vol. 44, p. 191, 2003.

"Microstructure and Post-Irradiation Annealing Behavior of

20% Cold-Worked 316 Stainless Steel," J.I. Cole, T.R. Allen, H. Kusanagi, K. Dohi, and J. Ohta, *Microstructure Processes in Irradiated Materials*, Materials Research Society Symposium Process, Vol. 650, Materials Research Society, 2001, R2.9.

"Microstructural Changes Induced by Post-Irradiation Annealing of Neutron-Irradiated Austenitic Stainless Steels," J.I. Cole and T.R. Allen, *Journal of Nuclear Materials*, 283-287 (2000) 329.

"The Effects of Long Time Irradiation and Thermal Aging on 304 Stainless Steel," T.R. Allen, J.I. Cole, C.L. Trybus and D.L. Porter, *Journal of Nuclear Materials*, 282 (2000) 171.

"Host phases for actinides in simulated metallic waste forms", D.E. Janney, Journal of Nuclear Materials, 323 (2003), 81-92.

"Actinides in metallic waste from electrometallurgical treatment of spent fuel", JOM_ 55 (9), (2003), 59-60.

"Thermal cycling of siliconized-SiC at high temperatures", P.A. Lessing, A.W. Erickson, and D.C. Kunerth, *Journal of Materials Science*, 36, p. 1389-1394, 2001.

"Synthesis and characterization of gadolinium phosphate neutron absorber", P.A. Lessing and A.W. Erickson, *Journal of the European Ceramic Society*, 23, p. 3049-2057, 2003.

Transmission electron microscope image of Zr oxide corrosion product formed on irradiated improved Zircaloy-4 cladding during exposure to high temperature water.